
Brace for anomalies in soap bubbles 

When you dip a wire frame into soapy water, it forms a soap film spanning the wire frame. 
By physical laws, the soap film is a liquid surface that minimizes the area — among all 
surfaces spanning the same boundary frame — and thus it is called a minimal surface.  The 
problem of looking for a surface with least area (or sometimes least surface tension or 
energy) also manifests in other physical problems, such as determining the shape of a 
bridge constructed of the least amount of materials; the structure of liquid crystals used in 
LCDs; and the event horizon near a black hole.  

Most minimal surfaces we encounter in everyday life appear to be smooth. But what if we 
run this experiment using a wire frame with a quirky shape, such as a wire that winds 
around more than once, or one that crosses itself? Do we still see a nice smooth soap film? 
This question — and its generalization to higher dimensions — has intrigued 
mathematicians since the eighteenth century. The first Fields Medal, the most coveted 
prize/highest honor in mathematics, was awarded to Jesse Douglas in 1936, for his 
contribution to this field of research. 

 

Figure 1 Soap films with singularities at corners and edges 

The reality that we live in a small 3-dimensional world is why we usually see smooth 
minimal surfaces without quirks. But to creatures living in a 4-dimensional world or higher, 
their soap bubbles exhibit a much richer variety of shapes.  This is because in higher 



dimensions, the soap film has a lot more room to twist and turn and form interesting 
shapes — and singularities.  

Since a singularity is often inevitable, mathematicians set out to study how big the set of 
such problematic points can be: Can they appear everywhere on the surface, or are they 
quite limited? And is it possible to tweak the wire frame to avoid singularities? 

To understand these questions, one needs to use a magnifying glass to zoom in at places of 
singularity, and see what the soap film looks like nearby. It turns out that when one looks 
closely enough, all singular points look like cones. Therefore, the question becomes: What 
possible cones could arise that minimize the area?  And, knowing which cone it is, can we 
recover the shape of the minimal surface that looks like this cone under an infinitely-
powerful magnifying glass?  

This is the roadmap for understanding all possible singularities of minimal surfaces. 
Similarly, when we look at a curvy road on a map, it is natural to first tilt our heads to the 
direction of the road (which is a straight line that plays the same role as the cone), and then 
look at how far the curvy road deviates from this straight line. There may even be 
singularities along the road, where it takes a sharp turn — in which case the direction of the 
road is no longer a straight line, but a cone (with the turning angle). The roadmap to 
analyzing singularities of minimal surfaces is an analogous process; but complexity arises 
since we are looking at a surface in higher dimensions, instead of on a planar map, and 
thus there are more directions and ways that the minimal surface can turn.   

Nonetheless, just as a curvy road can be written as the graph of a function over the horizon, 
a minimal surface can be written as the graph of a function over its model cone. The 
condition that it minimizes the area, is then reduced to the property that this function 
satisfies certain differential equations. This way, the geometric problem of looking for 
singularities is reduced to a problem of solving differential equations.  

Following this roadmap, and by accumulating the work of several generations of 
mathematicians, we now have a fairly good understanding about the singularities of 
minimal surfaces. In particular, although points of singularity are usually unavoidable, they 
only form a very small set whose total area is zero. If an alien living in a 4-dimensional world 
blows a soap bubble, the bubble has non-smooth points, but they can be counted out and 
they are never too close to each other. 


